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• Coronal Mass Ejections (CME)

are significant release of plasma and 

magnetic energy from the Sun, known to 

cause large disturbances in the Earth’s 

magnetosphere. The resulting 

magnetic variations create large

geomagnetically induced currents (GIC), 

known to cause massive power outages 

and significant damage to 

society's electrical infrastructure

(i.e power grid, communication lines).

Coronal Mass Ejections ML Predictions for Magnetic Perturbation (dB/dt)

• Integrating extreme value and network analysis in fine-tuning ML 

models during training for increased nowcasting/forecasting.

• Simulate the resiliency of power grid based on network analysis.
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ML Predictions for Geomagnetic Induced Current (GIC)

Long Short Term Memory Model

• LSTM model had the highest 

performance over random forest 

and multilinear regressions.

• Model Parameters:

Batch_size = 360

Optimization = Adam

Loss = MSE

Epochs = 50

• Comparison between models’ 

residual plot indicates LSTM's 

greater performance through 

more centralized graphs.

• Most notably, LSTM model has 

superior performance when 

tested at small time intervals, 

able to predict accurate magnetic 

perturbation of 5 min intervals.

Random Forest Regressor Model

• RFRM resulted in mediocre 

performance in predicting 

magnetic perturbation values (nT) 

for the North and East axes.

• However, the results are

essential in understanding 

the dynamics and the 

characteristics of the data.

• Model Parameters:

max_depth = 90

max_features = 0.5
min_samples_leaf = 8
min_samples_split = 5
n_estimators = 911

Loss = RMSE

• The model captures low-

magnitude and non-linear trends, 

however, fails to learn the high-

magnitude dynamics of the data.

Machine Learning Data Flow
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Network Analysis

• Sliding window cross-correlations 
indicated long-range connections
across east-west regions, notably at 
the onset of a solar storm.

• This is consistent with previous 
research, where depression of the 
magnetosphere due to a CME’s 
arrival often causes an increase in 
geomagnetic activity amongst similar 
latitudes regardless of sun-facing 
orientation. 

Source: NASA Scientific Visualization Studio

Extreme Value Analysis

Wavelet Decomposition & Cross Correlation

• The Generalized Extreme Value 
(GEV) model seeks to predict and
quantify the stochastic nature of 
these extreme GIC events through 
historical data.

• Our GEV model conveys a direct 
correlation between higher
thresholds and higher return 
values, indicating a strong 
dependency of extreme values on 
the chosen threshold.

• This sensitivity highlights the 
importance of selecting 
appropriate thresholds to capture 
the most relevant extreme events 
while minimizing statistical bias.

• A 4-level wavelet decomposition 
of historical GIC data on each station was 
conducted utilizing Haar wavelets
to detect the greatest rate of change of
GICs. Other wavelets were also applied to 
compare smoothness of coefficients, 
between wavelet types.

• After performing Maximal Overlap 
Discrete Wavelet Transform (MODWT), a
sliding window aggregated a 
small timeframe (30 min) of preprocessed 
data to create time-based nodal graphs 
with eigenvector centrality measures.
These graphs utilized a set of minimum 
device-specific thresholds to determine 
the correlation connections versus a global 
variable, in order to prevent bias towards 
highly active geomagnetic monitors. 
Equations used for optimizing threshold:

Source: North American Electric Reliability Corporation GIC Measured Data for 2013 OCT 03 

Random Forest 

Regressor Model

• RFRM performed 

poorly in predicting 

GICs with high 

residual errors.

• Parameters

max_depth = 5

n_estimator = 50

Long Short Term 

Memory Model

• LSTM model was  

more optimal for GIC 

predictions, reflecting 

overall trend of data. 

• LSTM seeks to reflect 

the trend of the data.

• Parameters:

Epochs = 1,

batch_size = default

Source: AE INDEX – Kyoto Geomagnetic Auroral Electrojet


